
50 years of dialysis services, where we stand now?

Khairi Ayad

Hemodialysis

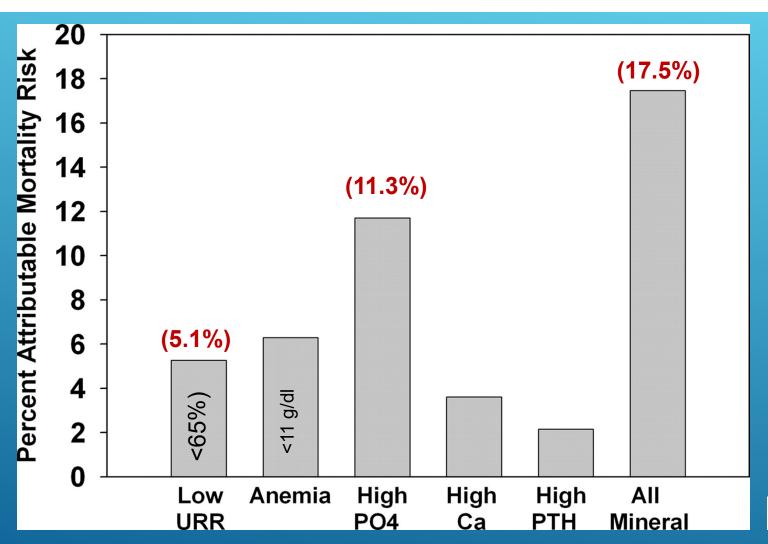
- ▶ 1973 in Jomhuriyah hospital Benghazi
- ▶ 1974 in University hosp. Benghazi
- ▶ 1974 in Central hosp. Tripoli
- ▶ 1975 in Tajoura hosp. Tripoli
- ▶ 1978 in Hawari hosp. Benghazi
- ▶ 1980 in Jamil hospital
- ▶ 1983 in Zawia hospital
- ▶ 6000 patients on regular hemodialysis in Libya
- ▶ 76 dialysis centers

PERITONEAL DIALYSIS

- ▶ 1988 Abudraa et al first used acute PD for pediatric patients with acute renal failure in Tripoli
- ▶ 1989 Alfituri N. et al first used acute PD for adults patients with acute renal failure in Zahra
- ▶ 2005 CAPD started in BENGHAZI, Sabratha & Alshaat center

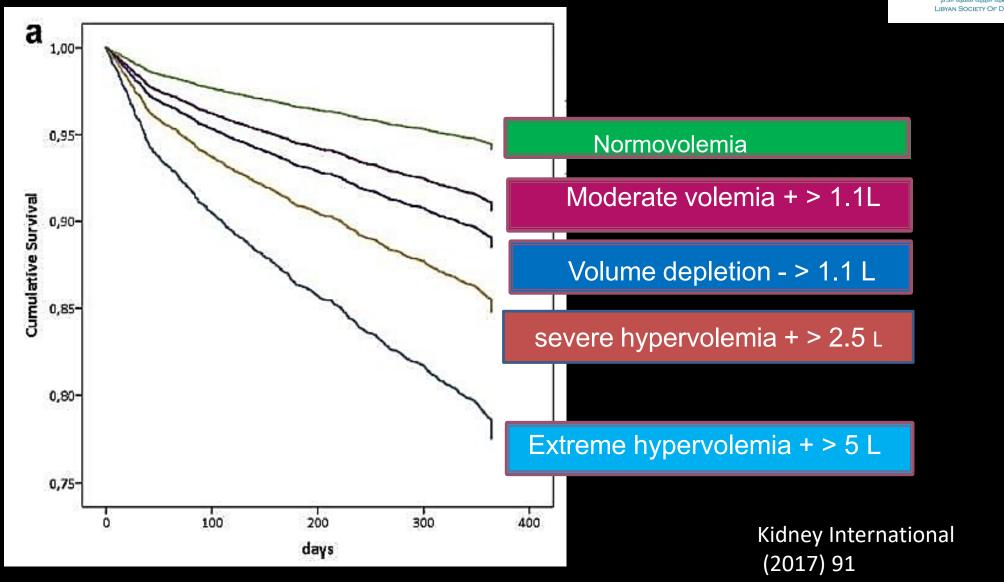
Efficacy of dialysis program

- ▶ Patient's survival
- ▶ Quality of life
- ► Biochemical outcome
- ► Minimize disease complications and hospitalization


Efficacy of Dialysis Program

- ► Anemia correction
- ► MBD
- ► Fluid electrolyte homeostasis
- ► Good nutrition
- ▶ Biocompatibility
- ► Acidosis correction
- ► Blood pressure
- ► Adequate solute removal

Attributable risk for disorders of mineral metabolism.



(39,530)

ÇJÁSN

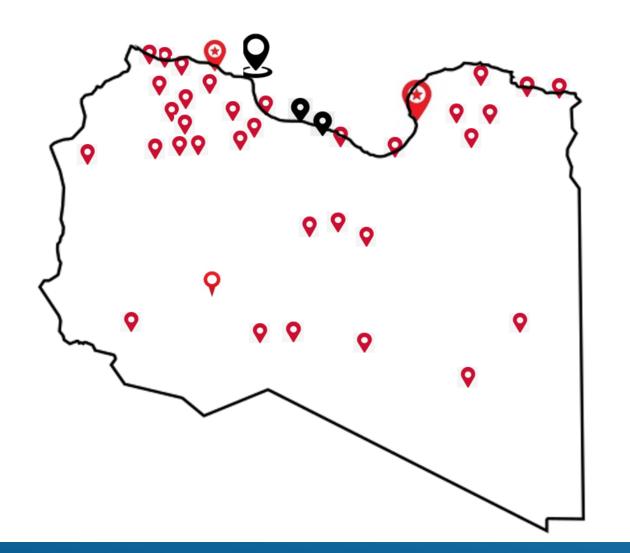
"FO" and "FD" survival

MALNUTRITION INFLAMMATION SCORE CUT-OFF PREDICTING MORTALITY IN MAINTENANCE HEMODIALYSIS PATIENTS

Mariana Clementoni Costa Borges, Barbara Perez Vogt, Luis Cuadrado Martin, Jacqueline Costa Teixeira Caramori

1 Faculdade de Medicina de Botucatu, UNESP Univ Estadual Paulista, Department of Clinical Medicine, Botucatu, São Paulo, Brazil.

2 Faculdade de Medicina de Botucatu, UNESP Univ Estadual Paulista, Department of Clinical Medicine, Botucatu, São Paulo, Brazil. Electronic address: ¡teixeir@fmb.unesp.br.


Conclusion:

MIS is an independent predictor of mortality in hemodialysis patients.

Clinical Nutrition ESPEN Volume 17, February 2017, Pages 63-67

AFTER 50 YEARS OF DIALYSIS WHERE WE STAND?

9 (

اكثر من 500 مريض

0

اكثر من 300 مريض

Q

اكثر من 200 مريض

8

اقل من 100 مريض

②

أيوائي تخصصي

Extent of Achieving KDOQI Targets For hemodialysis Adequacy in Libyan dialysis patients: A Multicenter Cross-Sectional Study

Khairi Ayad¹, Badreddin Shaibani², Zaynab Rahouma¹, Marwa Elmelowdi², Ibrahim M.Abualqumsaan³, Amina Smaida⁴, Faraj A.Tamtum⁵, Huda Salama⁶, Malak M.Alborki⁶, Mohamed Aboalgasem⁷, Asma Mahmoud⁸, Asma S.Alhabry⁹, Najah A Sbak¹⁰, Hana A. Bobaker¹⁰

1 Nephrology Department, Sabratha teaching hospital, Sabratha; 2 Hemodialysis department, AZ zawiyah Kidney hospital, Az-zawiyah; 3 Dialysis Department, Surman General Hospital, Surman; 4 Hemodialysis department, Agelat Hospital, Al Agelat; 5Alkhoms Kidney Services Center, Alkhoms; 6 Misrata Nephrology Center, Misrata; 7Nephrology Department, Iibn Sina Teaching Hospital, Sirt; 8Hemodialysis Department, Almagrif Hospital, Ajdabia; 9Alhawari Nephrology Center, Benghazi; 10Nephrology Department, Tobrouk Medical Center, Tobrouk

This study aimed to evaluate the hemodialysis adequacy and extent of achieving KDOQI targets for dialysis adequacy, hemoglobin level, mineral bone disorders and nutritional status among patients on maintenance hemodialysis.

- A cross sectional study was carried out on 286 randomly selected regular hemodialysis adult patients
- ▶ from 11 dialysis center(Al agelat , Sabratha, Surman , Az Zawiyah , Alkhoms ,Misurata, Sirt,Ajdabiya, Benghazi, Tobruk),study started on September 2019, ended on March 2021
- All patients subjected to dry body weight and height measurements for BMI calculations, Medical records revised for etiology of ESRD
- ► Hemodialysis prescription revised to detect, treatment time, vascular access, dialysis machine, dialyzer membrane properties, ultrafiltration volume, blood flow and dialysate flow.

Extent of Achieving KDOQI Targets For hemodialysis Adequacy in Libyan dialysis patients: A Multicenter Cross-Sectional Study

- Kt/V was calculated using the second-generation Daugirdas formula:
- ► Single-pool Kt/V = -In (R $-0.008 \times t$) + (4 $-3.5 \times R$) ×UF/W
- ▶ The targets for the measures were based on the KDOQI Clinical Practice Guidelines
 - Single-pool Kt/V > 1.2, URR ≥ 65% for adequate dialysis dose
 - ► Haemoglobin 11.0–12.0 g/dl
 - ▶ iPTH 150 -300 (pg/ml)
 - ▶ Body mass index(BMI) and serum albumin as nutritional markers.

Extent of Achieving KDOQI Targets For hemodialysis Adequacy in Libyan dialysis patients: A Multicenter Cross-Sectional Study

- ▶ Blood samples collected immediately from arterial fistula needle after insertion without tourniquet before starting haemodialysis for complete blood count, serum albumin, predialysis blood urea, serum creatinine, total serum calcium, serum phosphate, serum alkaline phosphatase, C reactive protein, and serum iPTH levels
- ▶ At the end of dialysis session blood samples for urea according to KDOQI guide line were taken to calculate urea clearance.

able 1: Summary of all statistical data of patients in study % Minimum Maximum Std. Deviation Mean Years 286 18 86 50.74 14.62 ge 14.54 189 51.92 lale (66.08%)18 86 (33.92%)97 18 **75** 48.44 14.56 emale 286 7.21 41.41 25.71 5.46 MI 286 5.00 14.50 9.71 1.745 b g/dl 286 16.60 47.00 29.22 6.08 286 2.20 5.70 3.81 0.64 Ibumin g/dl 286 234.00 25.57 37.44 0.00 RP mg 286 5.00 12.40 8.77 1.04 alcium mg/dl 286 1.10 13.30 5.75 2.07 286 12.00 172.00 46.65 24.90 rea post dialysis mg/dl

nospnorus n	ng/ai	200	1.10	13.30	3.73	2.07
Jk m	ng/dl	286	2.36	1609.00	187.12	193.04
TH p	og/ml	286	4.81	5500.00	490.08	694.69
reatment time n	min	286	150	270	228.53	20.80
lood flow m	ıl/min	286	170	450	269.30	40.31
ialysate Flow m	nl/min	286	250	800	469.93	75.33
ry body weight	Kg	286	30.00	113.00	70.80	16.04
rea predialysis	mg/dl	286	36.00	350.00	136.08	52.14
	4			. =	4 4 4 =	0.1.00

0.88

0.88

0.65

2.70

2.70

1.19

0.65

0.73

0.55

1.31

1.55

0.94

0.12

0.06

0.09

0.40

0.31

0.20

0.23

0.65

0.26

0.35

1.20

0.35

286

162

124

286

174

112

URR

Kt/V

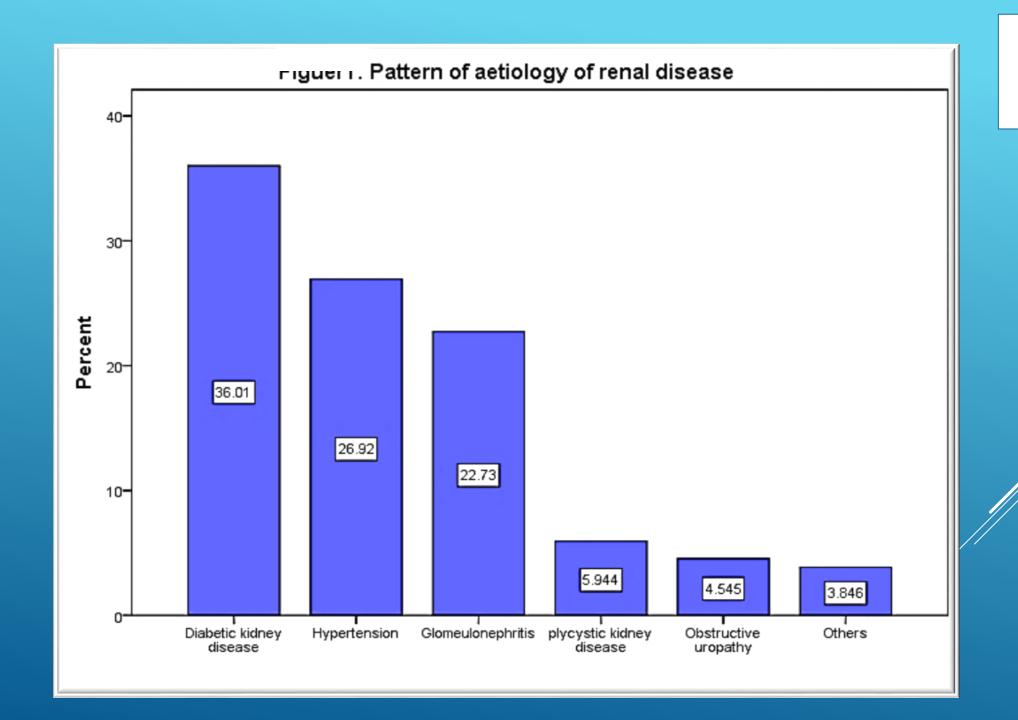
(60.84%)

(39.16%)

(56.64%)

(43.36%)

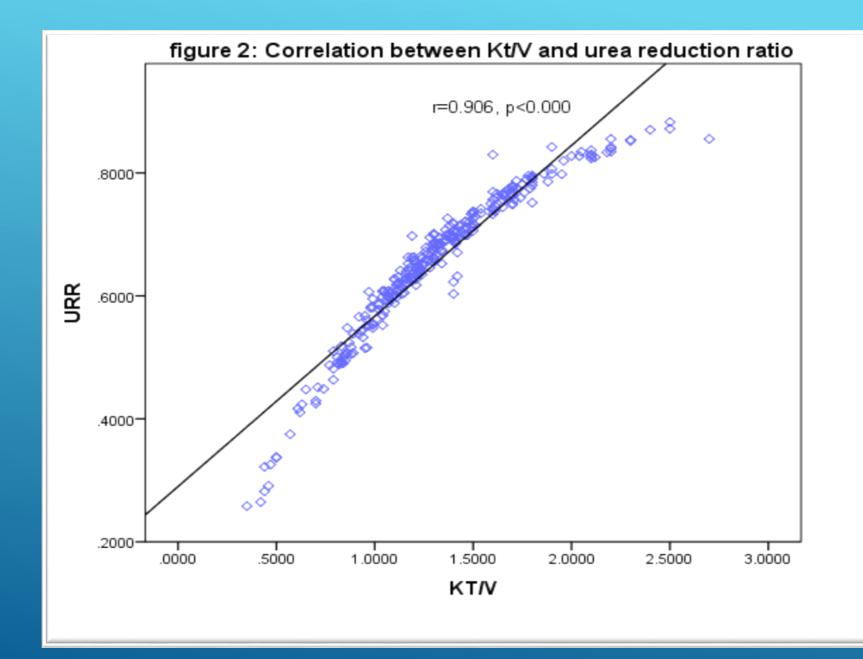
RR ≥ 65%


RR< 65%

t/V≥1.2

t/V<1.2

- ► The mean age of the patients was 50.74± 14.62 years, similar to the Gulf Cooperation Council countries (GCC)
- ▶ Less than the west European countries where the mean age is more than 60 years.



□ Clearance

- ▶ Mean Kt/V is 1.31±0.40.
- ▶ Only 60.84% of the patients achieved the target dose.
- These results were in agreement with similar findings from Saudi Arabia
- ▶ United States and European (DOPPS) countries (Mean Kt/V is 1.6 and more than 90% of patients reached target dose)
- Mean treatment time achieved is 228.53±20.8 which is similar to results from united kingdom, Italy and United State

- DOPPS 5 (2012–2015). Saudi J Kidney Dis Transpl 2016;27(6 Suppl 1):S42-S50
- ERA-EDTA Registry Annual Report 2015: a summary. Clinical Kidney Journal, Volume 11, Issue 1, February 2018, Pages 108–12

Comparison between Kt/V values with respect to treatment time

Treatment time		N	%	N	%	N	%	χ2-	test
		Gro	oup 1	Gro	oup 2	to	tal	χ2	P-value
3 hours	3	5	16.7	25	83.3	30	100	31.66	.000
3.5 hou	rs	23	52.3	21	47.7	44	100		
≥4 houi	S	146	68.9	66	31.1	212	100		
Total		174	60.84	112	39.16	286	100		

Group 1: Kt/V ≥1.2 Group 2: Kt/v <1.2

	Comparison between Kt/V values with respect to Gender							
	Group 1	Group 2	Total	Fischer				
	N %	N %	N	exact test	<i>P</i> -value			
Male	111 58.7	78 41.3	189	1.037	0.186			
Female	63 64.9	34 35.1	97					
Total	174 60.84	112 39.16	286					

Group 1: Kt/V ≥1.2 Group 2: Kt/v <1.2

Comparison	betv	veen F	Kt/V va	alues	with r	espect	t to Blood	Flow Rate
BFR ml/min	N	%	N	%	N	%	χ2-t	est
	Grou	p 1	Gro	up 2	Tot	al	χ2	P-value
< 250	55	43.0	73	57.0	128	100	31.235	.000
250-300	107	75.9	34	24.1	141	100		
> 300	12	70.6	5	29.4	17	100		
Total	174	60.84	112	39.16	286	100		

BFR: Blood flow rate

Group 1: Kt/V ≥1.2 Group 2: Kt/v <1.2

- □ Vascular access and Blood flow
 - ▶ 94.05% of the patients dialyzed from arteriovenous fistula.
 - ► Mean blood flow is 269.30±40.3 mil/min
 - ► European DOPPS country (300 360 ml/min) and United State (more than 400ml/min)

THE PRACTICED PATTERN OF VASCULAR ACCESS USED IN HEMODIALYSIS: A CROSS-SECTIONAL STUDY

Rodaba Ahmed Bitrou¹, Badreddin Shaibani¹, Hajir Salih Ahmed¹, Khairi Ayad²

1 Alzawia Kidney Hospital Kidney Hospital, 2 Sabratha Teaching Hospital, Azzawia University, Azzawia, Libya

□ Timing of arteriovenous fistulas creation

TimingPercentage

Early (preemptive)0.6 %

○ 1-2 months 45 %

○ 3-4 months 35%

Dialyzers

- All dialyzers are high efficient dialyzers (KoA for urea more than 800ml/min) surface area more than 1.4 square meters
- 64% patients were on high flux dialyzer
- 36% patients on low flux dialyzers.
- □ Effect of dialyzer type on adequacy of sessions
 - 58.3% of patients who dialyzed with low flux dialyzers achieved target dose (Kt/V>1.2)
 - 62.3% of patients who dialyzed with high flux dialyzers achieved target dose(Kt/V<1.2)
 - Percentage differences for Kt/V values among both dialyzer groups were statistically insignificant (P = 0.501).

□ Hemoglobin

- > only 27 % of studied patients achieved the target range (11.0 to 12.0 g/dl)
- > 36% of patients had hemoglobin level less than 9.0 g/dl

□ Nutritional status

- > BMI
 - 37.1% of the patients are within the range of body weight
 - 14% of the Patients are underweight
- > Serum albumin
 - hypoalbuminemia (<3.5 g/dl) was present in (27.98%) of the studied patients.

- **☐** Mineral Bone Disorders
- 19.2% of patients are within target range according to KDOQI guidelines (PTH 150 -300pgm)
- *** 80.8%** of the patients had metabolic bone disorders
 - > 30.8% low bone turnover
 - > 50% high bone turnover
- **❖** Hypocalcaemia 37.4%
- ❖ Hyperphosphatemia 72.7%

Distribution	of the s	tudied	patients	according	to
Laboratory	mineral	bone d	lisorder	indicators	

	N	%
PTH (pg/ml)		
<150	88	30.8
150-300	55	19.2
>300	143	50.0
Ca (mg/dl)		
<8.5	107	37.4
8.5 -9.5	125	43.7
>9.5	54	18.9
Pi (mg/dl)		
<2.5	18	6.30
2.5 -4.5	60	21.0
>4.5	208	72.7

Ca. calcium: Pi, inorganic phosphate: PTH, Parathyroid hormone

AFTER 50 YEARS OF DIALYSIS, WHERE WE STAND?

	Dialysis Machine	Dialyzers
Fresenius	5008s, Multifilrate pro	Low flux, High lux, HDF filters, CRRT
Baxter	Ak98 , Artis , Prisma flex	Low flux, High flux, HDF filters, HDx, CRRT
B Braun	Dialog+, OMNI	Low flux, high flux, HDF filters, CRRT
Nipro	Surdial X	Low flux, High flux, HDF filters
Dialife	DIANOVA X2	Low flux , High flux , HDF filters

AFTER 50 YEARS OF DIALYSIS, WHERE WE STAND?

- □ Online HDF
 - $_{\circ}$ 1.5 2 % of hemodialysis
 - Efficiency of online HDF No data
- □ HDX
 - Still in its beginning
- □ Online HDF and HDX Limitation:

Water Quality For Hemodialysis

WATER QUALITY FOR HEMODIALYSIS

Maximum allowable levels for total viable microbial count (TVC) and endotoxins in dialysis water, in standard and ultrapure dialysis fluid (dialysate) and online-prepared substitution fluid

Fluid category	Application	TVC (CFU/mL)	Endotoxin (EU/mL)	
Dialysis water	Basis for all fluid preparation	<100	< 0.25	
Dialysis water	basis for all fluid preparation	(action level 50)	(action level 0.125)	
Standard dialysis fluid	Minimum acceptable quality for	<100	< 0.5	
Standard dialysis fluid	routine HD	(action level 50)	(action level 0.25)	
Ultrapure dialysis fluid	Recommended for routine	< 0.1	< 0.03	
Oltrapure diarysis fluid	HD/high-flux HD	<0.1	<0.03	
Online-prepared substi-	HF and HDF, priming solution,	Sterile	Non nurogania	
tution fluid	bolus administration	Sterile	Non-pyrogenic	

HD: hemodialysis, HF: hemofiltration, HDF: hemodiafiltration, CFU: colony-forming unit, EU: endotoxin unit.

Based on the AAMI Dialysis Standards Collection, 2013.56

ENDOTOXIN RETENTION FILTERS

- Pore size
- Adsorptive properties of the membrane
- ► All manufactures advise to change these filters basing on No of session or time elapsed
- Adsorption capacity depends on concentration or load of endotoxins
- With high load or concentration of endotoxins, saturation point ??

Table 2. Bacterium-derived pyrogens and their detection						
Bacterium Cell Wall	Molecular Weight (Da)					
Components LPS lipid A other LPS fragments peptidoglycans muramilpeptides others Other cellular components bacteria DNA Secreted toxins exotoxin A	>100,000 2000 to 4000 <8000 1000 to 20,000 400 to 1000 Variable 71,000					
exotoxin A fragment other exotoxins	<1000 20,000 to 50,000					

BACK FILTRATION AND REPLACEMENT

- ► High flux HD 4- 5 L/4hours (back filtration)
- ► Online HDF 21 -24 L/4hours (Replacement)
- ► HDX 12 -14L /4 hours (back filtration)
- □ In our study
 - Mean CRP level 25.57± 37.44
 - > 52.3% of patients had CRP level > 10

Cardiovascular disease is reported as the leading cause of death (COD) among dialysis patients, followed by (sepsis/infection/chronic inflammations)

AFTER 50 YEARS OF DIALYSIS, WHERE WE STAND?

Summary

- Despite the advanced and high dialysis technology, the gab is still huge between our HD results and international standards.
- ➤ Mortality rate ????
- Online HDF
 - Is < 2% of dialysis in Libya
 - No data available about.
- Water quality is still a big issue and is a major limitation for online HDF and HDX in Libya